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Abstract-This paper concerns the linear stability of mixed or natural convection between inlinite parallel 
plates inclined arbitrarily with respect to gravity. In previous analyses, it has commonly been assumed that 
the temperature at the boundaries is fixed. In the present work, the heat flux at the boundaries is lixed. 
For this boundary condition. it is shown that if the temperature gradient parallel to the plates is adverse 
(temperature increasing downward), the flow is unstable for WI>’ value or the Rayleigh number. That is. 
the critical Rayleigh number is zero. This result holds independent of the base velocity and temperature 

distributions and inclination. 

INTRODUCTION 

THIS PAPER concerns the linear stability of mixed 
or natural convection between infinite parallel plates 
inclined arbitrarily with respect to gravity (see Fig. I). 
An attempt has been made to allow the class of flows 
under consideration to be as general as possible, 
although there are certain restrictions (as noted in the 
Problem Statement section). The study is funda- 
mental, and in considering the applicability of the 
results to real systems it must be recognized that there 
are idealizations present, such as the infinite extent of 
the domain. Nonetheless, it is hoped that the con- 
clusions of this study will not only be of fundamental 
interest, but will also advance our qualitative under- 
standing of low Rayleigh number flows in large aspect 
ratio ducts, such as might occur in solar collectors or 
chemical vapor deposition systems, for examples. 

In previous stability analyses of natural and mixed 
convection flows, it has commonly been assumed that 
the temperature at the boundaries is fixed, that is, the 
temperature perturbation must be zero at the bound- 
ary. The present work concerns the case in which the 
heat flux at the boundaries is fixed, that is, the gradient 
of the temperature perturbations (in the direction nor- 
mal to the plates) is zero at the boundary. For this 
boundary condition, it is shown that if ihe tem- 
perature gradient parallel to the plates is adverse (i.e. 
temperature increasing downward), then the flow is 
unstable (to perturbations of zero wavenumber in the 
directions parallel to the plates), for any value of 
the Rayleigh number. That is, the critical Rayleigh 
number is zero. This result holds independent of 
the base velocity and temperature distributions and 
inclination. This is in contrast to the case of a fixed 
temperature boundary condition, for which the criti- 
cal Rayleigh number is typically nonzero, and is 

dependent on the details of the base flow and incli- 
nation. 

There has of course been a great deal of research 
concerning natural and mixed convection between 
parallel plates. Catton [I] and Ostrach [2. 31, for exam- 
ple, give extensive reviews of natural convection in 
enclosures, including between parallel plates. The 
book by Gershuni and Zhukhovitskii [4] gives exten- 
sive coverage of the stability theory for vertical, hori- 
zontal, and tilted cases, again mostly for natural con- 
vection. 

The papers reviewed here will be restricted to those 
which are particularly relevant to the present work 
for one of two reasons. The first is that they consider 
a temperature gradient parallel to the plates. (The 
temperature gradient parallel to the plates will be 
called the longitudinal temperature gradient.) The 
second reason is that they consider the effect of the 
type of boundary condition for the temperature per- 
turbation. 

9 = gxex + 9 e +ge YY == 

FIG. 1. Parallel plates inclined arbitrarily with respect to 
gravity. 
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NOMENCLATURE 

temperature gradient in s-direction 
temperature gradient in :-direction 
Biot number, hLw/kw 
amplitude of temperature fluctuations 
specific heat 

e; unit vectors in the coordinate 
directions 
Fourier number, a,/wL~ 
magnitude of gravity vector 
gravity vector 

.4.- components of gravity 
Grashof number. gfiLJ/v’ 
heat transfer coefficient 

iaielnumber, k’+k: 
wall thermal co.nductivity 
wavenumbers 
channel spacing 
wall thickness 
pressure 
Prandtl number, r/u 
Rayleigh number, Gr PI 
Rayleigh number based on temperature 
difference between plates 
Reynolds number, UchL/v 
temperature 
time 
characteristic velocity 

U velocity vector 
U. I’, 11’ velocity components. 

Greek symbols 
thermal diffusivity 
thermal expansion coefficient 
longitudinal temperature gradient. 
~~~+g,B)ly 

1 

see equation (27) 
viscosity 
density 
growth rate 
d Re PI 
maximum value of 0 
Re(liA + rCB)/y, or 
I)’ = Re’(Li’+,~‘)g’/(g.~+gt) 
frequency of temperature fluctuations. 

Subscript 
W wall. 

Other symbols 
base quantity 

* dimensional quantity 
perturbation quantity 
,r-variation of perturbation quantity 
(except in 8). 

Longitudinal temperature gradient 
Gershuni and Zhukhovitskii [4] reviewed the cases 

of vertical and inclined plates with a constant vertical 
temperature gradient. In this situation, mechanical 
equilibrium exists, that is, the base flow is zero. In the 
case of a fixed temperature boundary condition, the 
flow becomes unstable at a finite, positive value of the 
Rayleigh number (Rayleigh number defined positive 
for an adverse temperature gradient). Gershuni and 
Zhukhovitskii also reviewed the case of vertical plates 
with a vertical temperature gradient and a temperature 
difference between the two plates. In this case, the 
base flow is nonzero. When there is only a lateral 
temperature difference, the velocity is cubic, and insta- 
bility sets in at a certain Grashof number based on the 
lateral temperature difference. Relative to this case, 
an adverse temperature gradient is destabilizing, as 
expected. The mechanism of instability can be either 
hydrodynamic (due to the increased base velocity 
caused by the longitudinal temperature gradient) or 
convective (due directly to the destabilizing effect of 
the adverse temperature gradient), depending on the 
values of the governing parameters. 

Several authors have considered vertical and 
inclined plates with a favorable temperature gradient 

(temperature increasing upward), particularly in the 
context of natural convection in a slot of finite length. 
Vest and Arpaci [S] studied the vertical case both 
analytically and experimentally. In their analysis, 
however, they neglected the effect of the longitudinal 
temperature gradient on the base flow, and omitted it 
from the disturbance energy equation. Hart [6] and 
Bergholz [7] considered the inclined case, and both 
discussed the mechanisms of instability, based on the 
energy integrals. 

Nakayama et al. [8] considered the case of Poiseuille 
flow between horizontal plates with a longitudinal 
temperature gradient, with the bottom plate hotter 
than the top. (Note that this does not meet the defi- 
nition of an.aduerse longitudinal temperature gradient 
to be given later in this paper, because the temperature 
gradient in the plane of the plates is perpendicular to 
the gravity vector.) It was seen that the longitudinal 
temperature gradient has the effect of making the 
flow less stable to longitudinal rolls. Balakrishnan [9] 
corrected Nakayama’s work to include the effect of 
the longitudinal temperature gradient on the base 
flow, but found that this does not have a significant 
effect on the stability results, at least for the range of 
parameters considered. 
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Boundary conditions for temperature perturbations 
First, let us begin with a discussion of the ter- 

minology ‘fixed flux’ or ‘fixed temperature’ boundary 
condition, and the physical realization of these ide- 
alized conditions. These terms have been used by other 
authors, such as Sparrow et al. [IO]. However, some 
authors use terms such as ‘perfectly insulating boun- 
dary’ for the fixed flux case, and ‘perfectly conducting 
boundary’ for the fixed temperature case (for instance, 
Gershuni and Zhukhovitskii [4]). The present author 
prefers the terms ‘fixed flux’ and ‘fixed temperature’ 
because they directly translate into the mathematical 
boundary conditions for the perturbations. Also, the 
phrases ‘perfectly insulating boundary’ and ‘perfectly 
conducting boundary’ do not precisely describe the 
conditions necessary to ensure fixed flux and fixed 
temperature boundary conditions, respectively. This 
will now be discussed. (The reader is also referred 
to Knowles and Gebhart [I I], for further discussion 
concerning the effect of thermal boundary conditions 
on the stability of external natural convection on a 
vertical flat plate.) 

In any real system, conduction within the walls that 
bound the fluid affects the boundary condition at the 
solid/fluid interface. Therefore, let us consider the wall 
which bounds the flow domain. On the outside of this 
wall is some mechanism for controlling the wall heat 
flux or temperature. For instance, there could be a 
heater outside of the wall, or another flowing fluid. 
The issue at hand is, if the fluid inside the wall is 
undergoing temperature perturbations. what is the 
boundary condition for the temperature per- 
turbations at the wall/fluid interface? In particular, 
under what conditions can it be approximated by 
either a fixed flux or a fixed temperature boundary 
condition? 

To answer these questions, let us consider the model 
problem illustrated in Fig. 2. The wall has thickness 
L, and thermal conductivity and diffusivity k, and 
LX,. The inside of the wall is exposed to the flow, which 
can be characterized with a heat transfer coefficient h, 
and an oscillating fluid temperature, C cos wt. The 
outer wall boundary condition can be specified heat 
flux or temperature. It is an elementary (although 
tedious) task to solve for the periodically varying wall 
temperature distribution, which depends on the Biot 
number, Bi = hL,/k,, and the Fourier number based 
on the period of oscillations, Fo = cr,/wLi. In each 

h. Ccosot h. Cmsol 

FIG. 2. Model problems for investigating boundary con- 
ditions for temperature perturbations. 

case then, both the temperature and the heat flux at 
the wall/fluid interface can be determined. It is seen 
that in both cases, the temperature at the wall/fluid 
interface will be nearly constant for small Bi’ Fo, 
whereas the heat flux at the wall/fluid interface will be 
nearly constant for large Bi’ Fo. Thus the appropriate 
boundary condition for the temperature per- 
turbations depends on Bi’ Fo = h’lwkpc. It is now 
clear that the relevant thermophysical property of the 
wall is the product kpc. as opposed to the conductivity 
alone. The effect of thermal capacity pc is as would 
be expected : small thermal capacity yields fixed heat 
flux because all of the heat entering at the outer surface 
must instantaneously conduct through to the inner 
surface. whereas large thermal capacity of course 
yields fixed temperature. Some additional discussion 
of the physical realization of boundary conditions for 
the temperature perturbations is given by Sparrow et 
al. [IO]. 

The most important conclusion of this exercise is 
that the boundary condition for the temperature per- 
turbations need not be of the same type as the bound- 
ary condition for the base temperature, because of the 
influence of conduction within the bounding walls. 
Regardless of whether the base temperature has a 
specified heat flux or a specified wall temperature 
boundary condition, the boundary condition for the 
temperature perturbarions depends on the quantity 
Bi’ Fo. 

The literature concerning the effect of the boundary 
condition for the temperature perturbation will now 
be reviewed. Gershuni and Zhukhovitskii [4] repeated 
the analysis of vertical plates with a constant vertical 
temperature gradient. for the fixed flux boundary con- 
dition. It is shown that in both the fixed temperature 
and fixed flux cases. the critical wavenumber is zero, 
but that the critical Rayleigh number is finite for the 
fixed temperature case and zero for the fixed flux case. 
Wooding [12] and Edwards [I 31 showed the same 
result. This result is in agreement with the premise of 
this paper. namely that the critical Rayleigh number 
is zero for fixed flux boundary conditions. Yih [14] 
examined the same problem, but erroneously reported 
a nonzero Rayleigh number, as explained by Wood- 
ing [12]. Catton and Edwards [I51 performed an 
experimental investigation concerning the flow in ver- 
tical cylinders of hexagonal cross-section. with 
adverse temperature gradients. They found that the 
critical Rayleigh number decreases with decreasing 
wall conductivity. However, the critical Rayleigh 
number would not be expected to go to zero even in 
the limit of zero wall conductivity, because per- 
turbations of zero wavenumber could not occur in 
these finite channels. 

Gershuni and Zhukhovitskii also summarized 
results concerning the stability of a horizontal layer 
between walls of arbitrary conductivity. It is well 
known that for the case of infinite wall conductivity 
(fixed temperature case), the critical Rayleigh number 
(based on temperature difference between the plates) 
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is 1708, and the critical wavenumber is 3.117. As the 
wall conductivity decreases, the critical Rayleigh num- 
ber and wavenumber both decrease. In the limiting 
case of zero wall conductivity, i.e. the fixed flux case, 
the critical wavenumber goes to zero, while the critical 
Rayleigh number was seen to remain finite. The same 
results were found earlier by Sparrow et al. [IO], who 
considered the similar situation of a horizontal layer 
with convective thermal boundary conditions. Fixed 
temperature and fixed flux boundary conditions are 
limiting cases in this more general formulation. It is 
important to note that both Gershuni and Zhu- 
khovitskii’s [4] and Sparrow’s [IO] results, namely that 
the critical Rayleigh number remains finite for the 
fixed flux boundary condition, appear to contradict 
the results of the present study. The apparent dis- 
crepancy is actually just a difference of perspective, 
which will be explained in a later section. 

PROBLEM STATEMENT 

The specific physical situation under consideration 
is shown in Fig. 1. Two infinite parallel plates are 
inclined arbitrarily with respect to gravity. It is 
intended to consider as general a base flow as possible. 
The only restrictions are as follows : 

(1) Only steady, parallel base flows will be con- 
sidered, that is the base velocity may depend only on 
J’, the coordinate direction normal to the plates. This 
is the usual fully developed assumption. 

(2) There is a zero normal velocity boundary con- 
dition on at least one of the plates. Then from the 
parallel flow assumption above, and continuity, it fol- 
lows that the y-direction base velocity, 6, is zero. 

(3) The base temperature may vary in all three 
coordinate directions, but it is restricted to vary lin- 
early in the directions parallel to the plates. In 
addition, the case under consideration here is that of 
an adverse longitudinal temperature gradient (to be 
defined shortly). 

Now, without loss of generality, the x-direction is 
chosen to be in the direction of the flow, so that the 
base velocity is of the following form (with boldface 
indicating a vector quantity, and an overbar indi- 
cating the base flow) : 

ii = C(y)ex. (1) 

Note that there may be components of gravity in each 
of the three coordinate directions, i.e. 

g = g.4h+g,.e,.+gzez. (2) 

According to the third assumption above, the base 
temperature is given by 

T*(x*,,*,z*) = Ax*+Bz*+F(y*). (3) 

In this equation, the temperature and coordinates are 
dimensional quantities (indicated with asterisks), so 
as to define the dimensional temperature gradients A 
and B, which have units of K m- ‘. The phrase ‘adverse 

longitudinal temperature gradient’ is defined to mean 
that the temperature gradient parallel to the plates, 
projected into the direction of gravity, is positive. This 
is expressed mathematically as follows : 

g*V,,T> 0 where V,: = ie,+ fez (4) x z 

or 

g,A +g,B >, 0. (5) 

Notice that if the plates are horizontal, the equals sign 
necessarily applies, since the longitudinal temperature 
gradient is perpendicular to gravity. 

Other than the restrictions just described, the base 
velocity and temperature distributions are arbitrary, 
and many base flow solutions which satisfy these 
restrictions have been published (see, for example, 
refs. [4, 16-l 81). The flow may be purely natural con- 
vection, or it may be mixed convection driven by a 
pressure gradient or a moving plate. There may be a 
zero or nonzero net mass flow in the x-direction. There 
may or may not be a temperature difference between 
the two plates. The requirement that temperature vary 
linearly in the x- and z-directions may be satisfied with 
a variety of thermal boundary conditions for the base 
flow, such as specified linearly varying wall tem- 
peratures (with the same x- and z-dependence top 
and bottom), or specified uniform heat flux top and 
bottom (with top and bottom heat fluxes allowed to 
be different). (Note that if there is zero net mass flow, 
then the net heat flux must also be zero to allow a 
steady base solution.) There may be sources or sinks 
of energy and momentum (in addition to the buoy- 
ancy force), provided that they are independent of the 
velocity, temperature, and pressure. Note that the 
reasonably general problem considered here encom- 
passes as limiting cases both horizontal and vertical 
geometries, and both pure natural and pure forced 
convection. The most severe restriction is that there 
must be an adverse (or zero) longitudinal temperature 
gradient, as given by equation (5). The case of a fav- 
orable temperature gradient is not considered here. 

ANALYSIS 

The linearized disturbance equations are derived as 
usual by expressing the velocities, temperature, and 
pressure as the sum of a base quantity (indicated with 
an overbar) and a small perturbation (indicated with a 
tilde), e.g. u = U+ 6. These expressions are substituted 
into the continuity, Navier-Stokes, and energy equa- 
tions (assuming the Boussinesq approximation holds 
and neglecting viscous dissipation in the energy equa- 
tion). In these equations, the velocities are made non- 
dimensional with any convenient characteristic 
velocity, UC,,, and the coordinates are made non- 
dimensional with the channel spacing L. Then time 
and pressure are made nondimensional with L/U,, 
and pU,,, respectively. The temperature is made non- 
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dimensional with the quantity yL, where y is the longi- 
tudinal temperature gradient, projected into the direc- 
tion of gravity, i.e. y = (g,?A+g,B)/g. Then the 
nondimensional temperature gradients are 
aF/jax = A/y, and air’/& = B/y. Next, the terms 
involving only base quantities are eliminated by virtue 
of the fact that they satisfy the steady continuity, 
Navier-Stokes, and energy equations. Then, terms 
quadratic in the perturbations are neglected. Finally, 
the perturbations are expressed in the form 

.T=P(y)exp(ik,x+ik,z+bt) (6) 

wherefstands for one of u, v, W, p, or T, the quantities 
k,r and k, are the wavenumbers in the x- and z-direc- 
tions, and C? is the growth rate of the disturbances. 
The resulting nondimensional disturbance equations 
are : 

continuity 

ik,ti+z?‘+ik,r3 = 0 (7) 

x-momentum 

y-momentum 

(8) 

z-momentum 

Gr g- e 
brk+ik,ri@ = -ik;$+ $(lD”-k”,F)- --r -T 

Re- g 

energy 

(10) 

A aF B 
c?f+ik,u?+ti- +I?- +i- = 

Y ay 11 
Ar(f.-k2F) 

(11) 

where k2 = k,2+k;Z and a prime denotes differ- 
entiation with respect to y. The Reynolds number is 
given by Re = UC,, L/v, the Grashof number is defined 
as Gr = gflyL4/v2, and Pr is the Prandtl number, v/a. 

The boundary conditions are (for walls at y = f i) : 

ti(ki) = B(fi) = G(*-:) = 0 . (1-a 

and for the thermal boundary condition of fixed heat 
flux : 

^ 
@) = 0. 

Some consideration will also be given to the fixed 
temperature boundary condition : 

T(_+i) = 0. (14) 

It should be noted that : 

(I) There is no Squire’s transformation for these 
equations because of the longitudinal temperature 
gradients A and B in the energy equation [equation 
(1 ])I. 

(2) The usual proof of exchange of stabilities (see 
for instance, Gershuni and Zhukhovitskii [4]) for the 
case of natural convection with the temperature 
increasing downward does not hold because of the 
nonzero base flow. 

As stated previously, the goal of this paper is to 
show that in the case of a fixed heat flux boundary 
condition, the flow is unstable for any (positive) value 
of the Rayleigh number, that is, the critical Rayleigh 
number is zero. This will be demonstrated not by 
investigating all possible solutions for the pertur- 
bations, but simply by showing that the base flow is 
unstable to one class of perturbations, namely those 
having both wavenumbers k, and k; going to zero. It 
will also be shown that this one class of perturbations 
yields a nonzero critical Rayleigh number in the case 
of a fixed temperature boundary condition. This does 
not prove that the fixed temperature case is stable 
below this value of the Rayleigh number, however, 
since the flow could still be unstable to a perturbation 
with k,V or k; nonzero. 

Setting k,, and k, equal to zero, the continuity equa- 
tion [equation (7)] along with the boundary con- 
ditions for i7 [equation (12)] imply i;(y) = 0, and the 
remaining disturbance equations [equations (8)-( 1 I)] 
reduce to the following : 

dli=&,, 
Re 

Gr sy 
Re’ g 

(j,;, = i &" _ 55 s; f 
Re Re’ g 

A B 
c?F+ri- +i- = 

Y Y 
(18) 

Notice that these equations are now independent of 
the base flow, except for the constant temperature 
gradients A and B. Furthermore, as a consequence, 
the solutions for the disturbances nrill satisfy exchange 
of stabilities when there is an adverse temperature 
gradient (positive Gr or Ra). The y-momentum equa- 
tion yields the pressure disturbance once the tem- 
perature disturbance is known, but otherwise can be 
removed from consideration. 

Next, equations (15) and (17) are combined by 
multiplying them by A and B, respectively, and 
adding. Defining $ = Re(liA + GB)/y : 

(19) 

Comparing the differential equations satisfied by t, 
ti, and t,k (and noting that they all satisfy the same 
boundary conditions of vanishing at the boundaries), 
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it is clear that li = (t,b/Re)(y,/g). IC = ($/Re)(g,/g), SO 

that ti2 = Re’(~i’+ ~i’)g’/(gf fg,‘). In other words, 
IJ is proportional to the magnitude of the disturbance 
velocity vector. Now. defining 0 = f/Pr, o = ri Rr Pr. 
and RN = Gr Pr, equations ( 19) and ( 18) become : 

u 
$“-- $-RciO=O 

PI (20) 

0”-un-lb = 0. (21) 

The boundary conditions are : 

I/b(d) = 0 (22) 

and, for fixed heat flux boundary condition : 

o’(*;) = 0 (23) 

or. for fixed temperature boundary condition : 

O( * 4, = 0. (24) 

These are precisely the disturbance equations for 
natural convection bctwcen vertical parallel plates 
with a longitudinal temperature gradient and zero 
base flow. given the same assumption that the dis- 
turbances have zero wavenumber periodicity in the 
s- and :-directions. These simplified equations are 
known to satisfy exchange of stabilities (for positive 
Rayleigh number). i.e. 0 must be real. The general 
solution is : 

(c sin ilr+dcos izr) 1 W-5) 

whcrc 

i,,? = [ 
-o(pI+I! + 

2Pr - J( 
ul(Pr-I)z I I 2 Ra 

4Pr’ >I 
(27) 

The case of a fixed flux boundary condition will be 
considered first. Applying the four boundary con- 
ditions, equations (22) and (23), to the general solu- 
tions, equations (25) and (26), yields the following 
even and odd solutions (defined up to an arbitrary 
multiplicative constant). Even solution : 

( > 
J-1 + ii+; cosTcos~~y 1 (29) 

with c a root of 

i, .’ 
u i, 

( > 

i2 
/.i+p; sinICOSi 

( > 
. 1 

- i2 jLi + i. cos ? sin $ = 0. (30) 

Odd solution : 

tj = sin 5 sin i.,j,-sin “’ sin i.?r 
2 2 (31) 

+ iI+ ;. sin >! sin i.,r 
( >. 1 (32) 

with cr a root of 

-iz ii+ :. sin $ cos? = 0. 
(1.’ 

(33) 

For a given RN and Pr, equation (27) relates i,, and 
j.? to CJ. and equations (30) and (33) can be solved for 
the eigenvalues cr. The solutions will bc discussed in 
the following section of the paper. 

The fixed temperature boundary condition will now 
be considered. Applying the four boundary 
conditions, equations (22) and (24). to the general 
solutions, equations (25) and (26), yields the following 
even and odd solutions (defined up to an arbitrary 
multiplicative constant). Even solution : 

cl, = cos llnj’, II odd (34) 

O= -++r’+;)cosnar, trodd. (35) 

Odd solution : 

II, = sin rm~v, 17 even (36) 

O= -+Jfi’n’+$sin,r7rj1, /reven. (37) 

For both the even and odd solutions, the eigenvalues 
u are given by 

g = -ny (Pr+l) + 
2 - J( 

n‘l?14 (pr-1)2 +Ra pr 
4 > 

(38) 

RESULTS AND DISCUSSION 

The flow will be stable to the type of perturbations 
considered here if all eigenvalues are negative, and 
unstable if any eigenvalue is positive. Thus, to deter- 
mine whether the flow is stable or unstable, it suffices 
to examine the largest eigenvalue. For the fixed flux 
case, the largest eigenvalue is found numerically from 
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FIG. 3(a). Growth rate as a function of Rayleigh number 
(for small Ro). 

equation (30) as a function of Ra and Pr, and is shown This is also shown in Figs. 3(a) and (b) (dashed line). 
as the solid line in Figs. 3(a) (for small RN) and (b) Clearly, o,,,, is only positive provided Ra > n“. There- 
(for large Ra). This line shows how the growth rate fore, for the fixed temperature boundary condition, 
of the most dangerous perturbation depends on the the flow is stable to the type of perturbations con- 
Rayleigh number. The most important thing to notice sidered here, for Ra < n’. This does not prove that 
is that for all values of Ra, there exists a positive the flow is truly stable, since it may be unstable to a 
eigcnvalue u”,;,,. That is, the flow is unstable to the finite wavelength perturbation. In general, for the case 
type of perturbations considered here, all the way of a fixed temperature boundary condition, the stdb- 
down to zero Rayleigh number. for which the flow is ility of the flow will depend on the base flow and 
neutrally stable. inclination. 

Also shown in Fig. 3(a) is the small Ra approxi- 
mation for urnan, for the fixed flux case (dash-dot line). 
The small Ra approximation is found by expanding 
equations (27) and (30) for small Ra, which implies 
small 1s and (T,,,. It is given by 

lim crmal = $. (39) Ro- 0 

It can be seen that this agrees very well with the exact 
solution for large Pr, even for RN on the order of 100. 
For small values of the Prandtl number. the exact 
curves deviate from the approximation at lower values 
of Ra. 

For large Rayleigh number, it can be seen from 
equation (27) that R? is large and imaginary. This 
enables simplifications to equation (30), which results 
in i., tan (i,,/2) going to infinity as Ra goes to infinity. 
The solution is 1, = nn, n odd. Then 0 is given by 
the same formula as for the fixed temperature case 
[equation (38)]. In particular, the largest eigenvalue 
B,,, is given by equation (40) below. Thus, for large 
Rayleigh number, umer; for the fixed flux case 
approaches the fixed temperature result. This is con- 
firmed in Fig. 3(b). 

Some small insight into the reason that the fixed 
flux case is neutrally stable for Ra = 0 while the fixed 
temperature case is stable (to the type of perturbations 
considered here), can be gained by considering the 
disturbance equations, equations (20) and (21), for 
Ra = 0. In the case of fixed temperature, 0 = 0 is not 
an admissible eigenvalue, because it yields only the 
trivial solution, I,/I = 0 = 0. In contrast, for the case of 
fixed flux, (T = 0 yields the nontrivial solution, I+/I = 0, 
0 = const. In other words, since the fixed flux case 
admits a temperature perturbation of the form 
R = const. at zero Rayleigh number, it is only neu- 
trally stable at Ra = 0, and becomes unstable for infi- 
nitesimally small Rayleigh number. 

For the fixed temperature case, the largest value of 
(T is found from equation (38), with n = I, and the 
positive sign : 

It should be recalled that the previous analyses of 
Sparrow et (11. [IO] and Gershuni and Zhukhovitskii 
[4] for horizontal plates with fixed flux boundary con- 
ditions yielded a nonzero critical Rayleigh number, 
appearing to contradict the present study. This appar- 
ent discrepancy will now be explained. First, it should 
be noted that the Rayleigh number in the earlier stud- 
ies was based on the temperature difference between 
the plates ( RclAT), whereas the Rayleigh number in this 
study (Ra) is based on the longitudinal temperature 
gradient projected into the direction of gravity (i.e. 
7). Based on this definition, the horizontal case has 
Ra = 0, so according to the present study the flow 
should be neutrally stable (or unstable to some other 
type of perturbation than is considered here) for any 
value of Ra,,. However, the authors of the earlier 
studies reported a critical RadT of 720. The dis- 
crepancy is simply a matter of perspective : the objec- 

J( 
X4 (pr--)’ 1 Ra p, 

4 

(40) 

__ Axed flux 

FIG. 3(b). Growth rate as a function of Rayleigh number 
(for large Ru). 
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tive of those studies was to find the critical Rayleigh 
numberfor fhe onset of motion (from a quiescent base 
flow). To this end, both previous analyses searched 
for nonzero solutions for the vertical velocity per- 
turbation (u in the present notation). The solution 
d = 0 was not considered, since it is a quiescent solu- 
tion. On the contrary, in the present study the solution 
6 = 6 = 0, F = const. defines a perturbation to which 
the base solution is neutrally stable; if the temperature 
is perturbed by a fixed amount, the new temperature 
profile will persist rather than returning to the original 
solution. 

Energy integrals 
Many authors have interpreted their linear stability 

results by evaluating the energy integrals associated 
with the velocity and temperature disturbances. 
Joseph [19] gives a thorough derivation of these 
energy integrals. An analysis of the energy integrals 
indicates what the source of the instability is, for 
example, streamwise buoyancy, cross-stream buoy- 
ancy, mean shear. For the type of perturbations con- 
sidered here, these integrals are particularly simple, 
and show that the only source of the instability is 
streamwise buoyancy. 

In the interest of simplicity, the energy integrals will 
be derived here beginning with the most simplified 
form of the equations, equations (20) and (21). Since 
exchange of stabilities holds for these equations, i.e. 
c is real, $ and 0 are real functions. Thus, there is no 
need to use complex conjugates in deriving the energy 
integrals. Equations (20) and (21) are multiplied by $ 
and 0, respectively, and integrated from y = -f to i 
to yield the following equations. Recall that $’ is 
proportional to (ti2+ti2), so that $’ represents the 
kinetic energy of the disturbances. The integral equa- 
tion associated with the temperature disturbances 
does not actually represent a form of energy. 

(41) 

Use has been made of the identity 
sfl” dy = -Jr’ 2 dy, provided that either f or f’ is 
zero at both boundaries, which is true for both I(/ and 
e. 

In the first of these equations, the left-hand side 
corresponds to the rate of change of kinetic energy of 
the disturbances, the first term on the right-hand side 
represents viscous dissipation, and the last term cor- 
responds to streamwise buoyancy. Since the first inte- 
gral on the right-hand side is always positive, viscous 
dissipation always reduces the kinetic energy, and is 
therefore stabilizing. The only possible source of kin- 
etic energy (for the type of perturbations considered 
here) is buoyancy in the flow direction. The thermal 

‘energy’ equation contains similar dissipation and 
source terms, and demonstrates the same point. Thus, 
the physical mechanism of instability is the well- 
known phenomenon that if a ‘particle’ of fluid is dis- 
placed in the upward flow direction, it will encounter 
cooler fluid, and if it is displaced in the downward 
flow direction it will encounter warmer fluid. In either 
case, the buoyancy of the particle relative to its sur- 
roundings will make it tend to continue in the same 
direction. 

It is interesting to consider equations (41) and (42) 
for Ra = 0. In equation (41), it is clear that o must be 
negative (i.e. stable flow), unless J II/’ 2 dy = 0. This is 
only possible if t,V = 0, which implies $ = 0, given the 
boundary conditions. Now in equation (42), it is clear 
that cr must be negative unless JP2 dy = 0. This is 
only possible if 0’ = 0. In the fixed temperature case 
this yields the trivial solution, 0 = 0, but in the fixed 
flux case it yields the nontrivial solution 0 = const., 
as discussed earlier. That is, for the Ra = 0 case, as 
long as 8’ is nonzero, dissipation causes the flow to be 
stable. The flow can only be neutrally stable if 0’ = 0, 
which is allowed by the fixed flux case. 

CONCLUSIONS 

This paper concerns the linear stability of mixed or 
natural convection between parallel plates inclined 
arbitrarily with respect to gravity. The base velocity 
and temperature distributions are allowed to be quite 
general. The only restrictions are that (1) the base 
flow must be steady and parallel, (2) there must be a 
zero normal velocity boundary condition on at least 
one plate, (3) the temperature can vary at most lin- 
early in the directions parallel to the plates, and (4) 
there is an adverse (or zero) longitudinal temperature 
gradient [defined by equation (5)]. It was shown that, 
if the boundary condition for the temperature per- 
turbations is fixed flux, then any such flow is unstable 
for all (positive) values of the Rayleigh number (where 
the Rayleigh number is based on the longitudinal 
temperature gradient projected in the direction of 
gravity). That is, the critical Rayleigh number is zero. 
This result was demonstrated by investigating the 
stability of the flow to perturbations with zero wave- 
number in the directions parallel to the plates. The 
implicit equation for the maximum growth rate [equa- 
tion (30)] was solved numerically over the range 
0 < Ra < 10’. The large and small Rayleigh number 
approximations were also given [equations (39) and 
(40)]. It was found that there is always a positive 
growth rate for any positive Rayleigh number, with 
the growth rate going to zero as Rayleigh goes to zero. 
By examining the energy integrals, it was seen that 
the only source of energy for these disturbances is 
buoyancy in the flow direction. 

This result may have significance in low Rayleigh 
number natural and mixed convection applications, 
such as solar collectors and chemical vapor deposition 
systems. Depending on whether instability is desirable 
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or undesirable, the walls might be constructed to 
approximate either fixed heat flux or fixed tempera- 
ture. Of course, any real system is of finite size, which 
prohibits the wavenumbers from going to zero. None 
the less, this work does indicate that fixed flux bound- 
ary conditions tend to promote instability more than 
do fixed temperature boundary conditions. 

To conclude, an entire class of flows has been shown 
to be unstable down to zero Rayleigh number. It is 
therefore not necessary to independently determine 
the neutral stability boundary for any subset of this 
class. 
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